M.Sc $1^{\text {st }}$ Semester examination, 2018

Department of Mathematics, Mugberia Gangadhar Mahavidyalaya

(Ordinary Differential Equations and Special Functions)

Paper MTM - 103:: FULL MARKS : 10 :: Time : 25 Minutes

Internal Assessment for Sem-I
Answer any two questions $\quad 5 * 2=10$
. 1 • Discuss Frobenious method of finding the series solution about the regular singular point at the origin for an ODE of $2^{\text {nd }}$ order when the roots of the indicial equation are unequal and not differ by an integer..
2. Find the Green Function for the boundary value problem

$$
\frac{d^{4} u}{d x^{4}}=0 \quad \text { with } \quad u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0
$$

3. Prove that for the confluent hypergeometric function

$$
G(\alpha, \beta, z)=\frac{\Gamma(\beta)}{\Gamma(\alpha) \Gamma(\beta-\alpha)} \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-\alpha-1} e^{z t} d t .
$$

M.Sc $1^{\text {st }}$ Semester examination, 2018

Department of Mathematics, Mugberia Gangadhar Mahavidyalaya

 (Ordinary Differential Equations and Special Functions)Paper MTM - 103: FULL MARKS : 10 :: Time : 20 Minutes
Answer any two questions $\quad 5 * 2=10$
. 1 • Discuss Frobenious method of finding the series solution about the regular singular point at the origin for an ODE of $2^{\text {nd }}$ order when the roots of the indicial equation are unequal and not differ by an integer..
2. Find the Green Function for the boundary value problem
$\frac{d^{4} u}{d x^{4}}=0 \quad$ with $\quad u(0)=u^{\prime}(0)=u(1)=u^{\prime}(1)=0$
3. Prove that for the confluent hypergeometric function
$G(\alpha, \beta, z)=\frac{\Gamma(\beta)}{\Gamma(\alpha) \Gamma(\beta-\alpha)} \int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-\alpha-1} e^{z t} d t$.

